2 Paolo Piazza and

نویسنده

  • Thomas Schick
چکیده

Let Γ be a discrete group, and let M be a closed spin manifold of dimension m > 3 with π1(M) = Γ. We assume that M admits a Riemannian metric of positive scalar curvature. We discuss how to use the L-rho invariant ρ(2) and the delocalized eta invariant η associated to the Dirac operator on M in order to get information about the space of metrics with positive scalar curvature. In particular we prove that, if Γ contains torsion and m ≡ 3 (mod 4) then M admits infinitely many different bordism classes of metrics with positive scalar curvature. This implies that there exist infinitely many concordance classes; we show that this is true even up to diffeomorphism. If Γ has certain special properties, e.g. if it contains polynomially growing conjugacy classes of finite order elements, then we obtain more refined information about the “size” of the space of metric of positive scalar curvature, and these results also apply if the dimension is congruent to 1 mod 4. For example, if dim(M) ≡ 1 (mod 4) and Γ contains a central element of odd order, then the moduli space of metrics of positive scalar curvature (modulo the action of the diffeomorphism group) has infinitely many components, if it is not empty. Some of our invariants are the delocalized η-invariants introduced by John Lott. These invariants are defined by certain integrals whose convergence is not clear in general, and we show, in effect, that examples exist where this integral definitely does not converge, thus answering a question of Lott. We also discuss the possible values of the rho invariants of the Dirac operator and show that there are certain global restrictions (provided the scalar curvature is positive).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Gaussian statistics of anomalous diffusion: The DNA sequences of prokaryotes

Paolo Allegrini, Marco Buiatti, Paolo Grigolini, and Bruce J. West Istituto Nazionale di Fisica della Materia, Unitá di Ricerca di Pisa, Piazza Torricelli, 2-56100 Pisa, Italy Dipartimento di Fisica dell’Universitá di Pisa, Piazza Torricelli 2, 56100 Pisa, Italy Istituto di Biofisica del Consiglio Nazionale delle Ricerche, Via S. Lorenzo 26, 56127 Pisa, Italy Center for Nonlinear Science, Unive...

متن کامل

Fractional Brownian motion as a nonstationary process: An alternative paradigm for DNA sequences

Paolo Allegrini, Marco Buiatti, Paolo Grigolini, and Bruce J. West Center for Nonlinear Science, University of North Texas, P.O. Box 5368, Denton, Texas 76203-5368 Dipartimento di Fisica dell’Università di Pisa, Piazza Torricelli 2, 56100, Pisa, Italy Istituto di Biofisica del Consiglio Nazionale delle Ricerche, Via San Lorenzo 26, 56127 Pisa, Italy ~Received 15 April 1997; revised manuscript r...

متن کامل

Robust gates for holonomic quantum computation

Giuseppe Florio, 2 Paolo Facchi, 2 Rosario Fazio, 5 Vittorio Giovannetti, and Saverio Pascazio Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy INFN, Sezione di Bari, I-70126 Bari, Italy Dipartimento di Matematica, Università di Bari, I-70125 Bari, Italy NEST CNR-INFM & Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy International School for Advanced Studies (...

متن کامل

The index of Dirac operators on manifolds with fibered boundaries

Let X be a compact manifold with boundary ∂X, and suppose that ∂X is the total space of a fibration

متن کامل

A Vestibular Interface for Natural Control of Steering in the Locomotion of Robotic Artifacts: Preliminary Experiments

1 ARTS Lab. Scuola Superiore Sant’Anna Piazza Martiri della Libertà, 33 56127 Pisa, Italy [email protected] 2 IMT Doctoral School in Biorobotics Science and Engineering Via San Micheletto, 3 55100 Lucca, Italy 3 CRIM Lab. Scuola Superiore Sant’Anna Piazza Martiri della Libertà, 33 56127 Pisa, Italy 4 CNRS UMR 7152 Collège de France Place Marcelin Berthelot, 11 75231 Paris Cedex 05, France

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007